About
Research Mission
Supervision
Selected Recorded Talks
Publications
Publications
Type
Conference paper
Journal article
Preprint
Date
2023
2022
2021
2020
2019
2018
Matias Altamirano
,
Francois-Xavier Briol
,
Jeremias Knoblauch
(2023).
Robust and Scalable Bayesian Online Changepoint Detection
. ICML.
PDF
Cite
Code
Matias Altamirano
,
Francois-Xavier Briol
,
Jeremias Knoblauch
(2023).
Robust and Conjugate Gaussian Process Regression
. arXiv.
PDF
Cite
Code
Veit Wild
,
Sahra Ghalebikesabi
,
Dino Sejdinovic
,
Jeremias Knoblauch
(2023).
A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods
. NeurIPS.
PDF
Cite
Miheer Dewaskar
,
Chris Tosh
,
Jeremias Knoblauch
,
David Dunson
(2023).
Robustifying likelihoods by optimistically re-weighting data
. arXiv.
PDF
Cite
Takuo Matsubara
,
Jeremias Knoblauch
,
Francois-Xavier Briol
,
Chris Oates
(2023).
Generalized Bayesian Inference for Discrete Intractable Likelihood
. JASA.
PDF
Cite
Charita Dellaporta
,
Jeremias Knoblauch
,
Theo Damoulas
,
Francois-Xavier Briol
(2022).
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
. AISTATS 2022.
PDF
Cite
Hisham Husain
,
Jeremias Knoblauch
(2022).
Adversarial Interpretation of Bayesian Inference
. ALT 2022.
PDF
Cite
Joel Jaskari
,
Jaakko Sahlsten
,
Theodoros Damoulas
,
Jeremias Knoblauch
,
Simo Särkkä
,
Leo Kärkkäinen
,
Kustaa Hietala
,
Kimmo Kaski
(2022).
Uncertainty-aware deep learning methods for robust diabetic retinopathy classification
. IEEE Access.
PDF
Cite
Jeremias Knoblauch
,
Jack Jewson
,
Theodoros Damoulas
(2021).
An Optimization-centric View on Bayes' Rule: Reviewing and Generalizing Variational Inference
. JMLR.
PDF
Cite
Code
Video
Takuo Matsubara
,
Jeremias Knoblauch
,
Francois-Xavier Briol
,
Chris Oates
(2021).
Robust generalised Bayesian inference for intractable likelihoods
. JRSS-B.
PDF
Cite
Juan Maronas
,
Oliver Hamelijnck
,
Jeremias Knoblauch
,
Theodoros Damoulas
(2021).
Transforming Gaussian processes with normalizing flows
. AISTATS (2021).
PDF
Cite
Sebastian Schmon
,
Patrick Cannon
,
Jeremias Knoblauch
(2021).
Generalized Posteriors in Approximate Bayesian Computation
. AABI.
PDF
Cite
Jeremias Knoblauch
,
Lara Vomfell
(2020).
Robust Bayesian Inference for Discrete Outcomes with the Total Variation Distance
. ArXiv.
PDF
Cite
Jeremias Knoblauch
,
Hisham Husain
,
Tom Diethe
(2020).
Optimal Continual Learning has Perfect Memory and is NP-hard
. ICML (2020).
PDF
Cite
Jeremias Knoblauch
(2019).
Frequentist Consistency of Generalized Variational Inference
. ArXiv.
PDF
Cite
Code
Jeremias Knoblauch
(2019).
Robust Deep Gaussian Processes
. ArXiv.
PDF
Cite
Code
Jeremias Knoblauch
,
Jack Jewson
,
Theodoros Damoulas
(2018).
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with β-Divergences
. NIPS (2018).
PDF
Cite
Code
Video
Jeremias Knoblauch
,
Theodoros Damoulas
(2018).
Spatio-Temporal Bayesian On-line Changepoint Detection with Model Selection
. In
International Conference on Machine Learning (ICML)
.
PDF
Cite
Code
Video
Cite
×