

Jeremias Knoblauch^{1,2}, Hisham Husain^{3,4}, Tom Diethe⁵

November 6, 2020

¹University of Warwick, Department of Statistics
²The Alan Turing Institute for Data Science and AI
³Australian National University, College of Engineering & Computer Science
⁴Data61, Sydney
⁵Amazon

Theory:

- (1) Connects set theory to catastrophic forgetting in CL
- (2) Avoiding catastrophic forgetting (= optimal CL)
 - (A) is NP-HARD;
 - (B) needs perfect memory.

Practical ramifications:

- (A) CL algorithms = heuristics for NP-HARD problem
- (B) CL with memorization > CL with regularization

Spotlight: CL and set theory

No catastrophic forgetting = all tasks SAT isfy optimality criterion $\mathcal C$

Interpretations using SATisfiability sets:

- (1) SAT_t = { $\theta \in \Theta : C(\theta)$ is satisfied on task t}.
- (2) No catastrophic forgetting (= optimal CL) $\iff \theta_t \in \cap_{i=1}^t SAT_i$.

Spotlight: Hardness and memory for CL

Optimal Continual Learning

Structure

- (1) Set Theory & CL
 - (1.1) CL & Catastrophic Forgetting
 - (1.2) Analyzing CL via sets
- (2) Optimal CL: NP-hardness
 - (2.1) The set intersection problem
 - (2.2) NP-hardness results
 - (2.3) A linear model example
- (3) Optimal CL: Perfect Memory
 - (3.1) Defining Perfect Memory
 - (3.2) Memory requirements of CL
 - (3.3) A linear model example
- (4) Practical Ramifications: Memorization vs Regularization

(1.1) CL and Catastrophic Forgetting

(1.2) Catastrophic Forgetting & Optimality

Notation:

 $heta_t = \mathsf{parameter} \; \mathsf{value} \; \mathsf{after} \; \mathsf{task} \; t$

 $\mathcal{Q}=\mathsf{empirical}\ \mathsf{distributions}\ \mathsf{of}\ \mathsf{all}\ \mathsf{possible}\ \mathsf{tasks}$

 $\widehat{\mathbb{P}}_t \in \mathcal{Q} = t$ -th task's empirical distribution:

$$\widehat{\mathbb{P}}_t(x,y) = \frac{1}{n_t} \sum_{i=1}^{n_t} \delta_{(y_i^t, x_i^t)}(y, x), \text{ for } n_t \in \mathbb{N}, y_i^t \in \mathbb{R}, x_i^t \in \mathbb{R}^d$$

 $\mathcal{C}=$ Optimality criterion. E.g., linear model & $\varepsilon\text{-error}$ bound:

$$\mathcal{C}(\boldsymbol{ heta},\widehat{\mathbb{P}}) = egin{cases} 1 & ext{if } rac{1}{n_t}\sum_{i=1}^t |y_i^t - \boldsymbol{ heta}^{ op} x_i^t| \leq arepsilon \ 0 & ext{otherwise.} \end{cases}$$

 $\operatorname{SAT}_t = \operatorname{SAT}_t$ is fiability sets of task t, $\operatorname{SAT}_t = \{ \theta \in \Theta : \mathcal{C}(\theta, \widehat{\mathbb{P}}_t) = 1 \}$

- (i) Optimality on all tasks = No catastrophic forgetting
- (ii) Optimality $\iff \boldsymbol{\theta}_t \in \cap_{i=1}^t SAT_i$
- (iii) Lemma 1: Analysis of optimal CL via SAT_t valid!

(1.2) Catastrophic Forgetting & Optimality

Meaning of Lemma 1: Optimal CL has a set-theoretic interpretation

(2.1) The set intersection problem

Notation:

 $\operatorname{Sat}_{\mathcal{Q}} = \operatorname{set}$ of all possible Sat_{t} $\operatorname{Sat}_{\cap} = \operatorname{all}$ finite intersections $\cap_{i=1}^{t} \operatorname{Sat}_{i}$ of sets in $\operatorname{Sat}_{\mathcal{Q}}$

Lemma 2

An optimal CL algorithm is computationally at least as hard as deciding whether $A \cap B = \emptyset$, for $A \in SAT_{\cap}$ and $B \in SAT_{Q}$.

(2.2) NP-Hardness result

Theorem 1

If $\operatorname{SAT}_{\mathcal{Q}} \supseteq S$ or $\operatorname{SAT}_{\cap} \supseteq S$ so that S is the set of tropical hypersurfaces or the set of polytopes on Θ , then optimal CL is NP-HARD.

Proof sketch.

Combine Lemma 2 with the fact that the intersection problem is NP-COMPLETE if S is the set of tropical hypersurfaces or the set of polytopes on Θ .

- (i) θ = coefficient vector of linear model
- (ii) Q = all tasks with empirical measures

$$\widehat{\mathbb{P}}_t(x,y) = \frac{1}{n_t} \sum_{i=1}^{n_t} \delta_{(y_i^t, x_i^t)}(y, x), \text{ for } n_t \in \mathbb{N}, y_i^t \in \mathbb{R}, x_i^t \in \mathbb{R}^d$$

(iii) $C = \varepsilon$ -upper bound criterion in the L_1 -norm:

$$\mathcal{C}(\boldsymbol{ heta}, \widehat{\mathbb{P}}) = egin{cases} 1 & ext{if } rac{1}{n_t} \sum_{i=1}^t |y_i^t - \boldsymbol{ heta}^{ op} x_i^t| \leq arepsilon \\ 0 & ext{otherwise.} \end{cases}$$

 \implies SAT $_{\cap}$ contains *all* polytopes in Θ , since

$$\text{SAT}_t = \left\{ \boldsymbol{\theta} \in \boldsymbol{\Theta} : \boldsymbol{y}^t - \boldsymbol{\theta}^T \boldsymbol{X}^t \leq \varepsilon \cdot \boldsymbol{n}_t \text{ and } \boldsymbol{\theta}^T \boldsymbol{X}^t - \boldsymbol{y}^t \geq \varepsilon \cdot \boldsymbol{n}_t \right\}$$

Q: So what? Who cares about simple Linear Models?

Corollary 1

If deciding whether $A \cap B = \emptyset$ for $A, B \in S$ is computationally at least as hard as for the collection of polytopes in Θ , optimal CL is NP-HARD.

Meaning of Corollary 1:

Complicated nonlinear models / Neural Networks also $\rm NP{\mathar}$

(3.1) Defining Perfect Memory

Intuition: We could encounter any $SAT_t \in SAT_Q$ at task t \implies Need all information in $\bigcap_{i=1}^{t-1}SAT_i$ from tasks $1, \ldots t - 1$

(3.1) Defining Perfect Memory

Q: Smallest necessary informational content in $\cap_{i=1}^{t} SAT_i$?

 \implies The subset of $\cap_{i=1}^{t} SAT_{i}$ without *equivalent/redundant* elements!

Definition 1 (Equivalence set (\approx 'redundance class'))

For $\theta \in \Theta$, define $S(\theta) = \{A \in \text{SAT}_{\mathcal{Q}} : \theta \in A\}$ and the equivalence sets

 $\mathrm{E}(\boldsymbol{\theta}) = \bigcap_{A \in S(\boldsymbol{\theta})} A.$

Optimal Continual Learning

(3.1) Defining Perfect Memory

Perfect Memory = store element of each $E(\theta)$ s.t. $E(\theta) \subseteq \bigcap_{i=1}^{t} SAT_{i}$

Lemma 4

For optimal CL algorithms, there exists $h : \Theta \times i \to 2^{\Theta}$ for which $h(\theta_t, I_t) = C_t$ is s.t. $C_t \cap A = \emptyset \iff \cap_{i=1}^t \text{SAT}_i \cap A = \emptyset$, $\forall A \in \text{SAT}_Q$.

Meaning of Lemma 4:

Optimal CL memorizes enough to solve set intersection problem

Corollary 2

If C and Q are s.t. $E(\theta) \in Sat_Q$ for all $\theta \in \Theta$, any optimal CL algorithm has perfect memory.

Meaning of Corollay 2:

You can only solve the set intersection problem with perfect memory

(i)
$$\theta = \text{coefficient vector of linear model}$$

(ii) Q = all tasks with empirical measures

$$\widehat{\mathbb{P}}_t(x,y) = \frac{1}{n_t} \sum_{i=1}^{n_t} \delta_{(y_i^t, x_i^t)}(y, x), \text{ for } n_t \in \mathbb{N}, y_i^t \in \mathbb{R}, x_i^t \in \mathbb{R}^d$$

(iii) $C = \varepsilon$ -upper bound criterion in the L_1 -norm:

$$\mathcal{C}(\boldsymbol{ heta}, \widehat{\mathbb{P}}) = egin{cases} 1 & ext{if } rac{1}{n_t} \sum_{i=1}^t |y_i^t - \boldsymbol{ heta}^T x_i^t| \leq arepsilon \\ 0 & ext{otherwise.} \end{cases}$$

 $\implies \text{SAT}_{\mathcal{Q}} \text{ contains } \{\theta\} = \text{E}(\theta) \text{ for all } \theta \in \Theta.$ (Take $\mathbf{X}^t, \mathbf{y}^t$ s.t. $\mathbf{y}^t - \varepsilon n_t = \theta^T \mathbf{X}^t$ is solved by **unique** $\theta \in \Theta$)

(4) Practical Ramifications: Memorization vs Regularization

Implications for algorithm design:

- (1) Optimal $CL = moving \cap_{i=1}^{t-1} SAT_i \longrightarrow \cap_{i=1}^{t-1} SAT_i \cap SAT_t$
- (2) We need perfect memory to do that without errors

 \Rightarrow memorization should work better than regularization

Theory:

- (1) Connects set theory to catastrophic forgetting in CL
- (2) Avoiding catastrophic forgetting (= optimal CL)
 - (A) is NP-HARD;
 - (B) needs perfect memory.

Practical ramifications:

- (A) CL algorithms = heuristics for NP-HARD problem
- (B) CL with memorization $>\operatorname{CL}$ with regularization

E-mail address:

Personal Website:

j.knoblauch@warwick.ac.uk

https://jeremiasknoblauch.github.io/

@LauchLab Twitter Handle:

Optimal Continual Learning