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Spotlight: Contributions

Theory:

(1) Connects set theory to catastrophic forgetting in CL

(2) Avoiding catastrophic forgetting (= optimal CL)

(A) is NP-hard;

(B) needs perfect memory.

Practical ramifications:

(A) CL algorithms = heuristics for NP-hard problem

(B) CL with memorization > CL with regularization
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Spotlight: CL and set theory

No catastrophic forgetting = all tasks Satisfy optimality criterion C

Interpretations using Satisfiability sets:

(1) Satt = {θ ∈ Θ : C(θ) is satisfied on task t}.
(2) No catastrophic forgetting ( = optimal CL) ⇐⇒ θt ∈ ∩ti=1Sati .
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Spotlight: Hardness and memory for CL
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Structure

(1) Set Theory & CL

(1.1) CL & Catastrophic Forgetting

(1.2) Analyzing CL via sets

(2) Optimal CL: NP-hardness

(2.1) The set intersection problem

(2.2) NP-hardness results

(2.3) A linear model example

(3) Optimal CL: Perfect Memory

(3.1) Defining Perfect Memory

(3.2) Memory requirements of CL

(3.3) A linear model example

(4) Practical Ramifications: Memorization vs Regularization
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(1.1) CL and Catastrophic Forgetting

Catastrophic Forgetting: θ3 fails to correctly label Task 1, i.e.
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(1.2) Catastrophic Forgetting & Optimality

Notation:

θt = parameter value after task t

Q = empirical distributions of all possible tasks

P̂t ∈ Q = t-th task’s empirical distribution:

P̂t(x , y) =
1

nt

nt∑
i=1

δ(y t
i ,x

t
i )

(y , x), for nt ∈ N, y t
i ∈ R, x ti ∈ Rd

C = Optimality criterion. E.g., linear model & ε-error bound:

C(θ, P̂) =

{
1 if 1

nt

∑t
i=1 |y t

i − θT x ti | ≤ ε
0 otherwise.

Satt = Satisfiability sets of task t, Satt = {θ ∈ Θ : C(θ, P̂t) = 1}

(i) Optimality on all tasks = No catastrophic forgetting

(ii) Optimality ⇐⇒ θt ∈ ∩ti=1Sati

(iii) Lemma 1: Analysis of optimal CL via Satt valid!
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(1.2) Catastrophic Forgetting & Optimality

Meaning of Lemma 1: Optimal CL has a set-theoretic interpretation
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(2.1) The set intersection problem

Notation:

SatQ = set of all possible Satt

Sat∩ = all finite intersections ∩ti=1Sati of sets in SatQ

Lemma 2

An optimal CL algorithm is computationally at least as hard as deciding

whether A ∩ B = ∅, for A ∈ Sat∩ and B ∈ SatQ.
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(2.2) NP-Hardness result

Theorem 1

If SatQ ⊇ S or Sat∩ ⊇ S so that S is the set of tropical hypersurfaces

or the set of polytopes on Θ, then optimal CL is NP-hard.

Proof sketch.

Combine Lemma 2 with the fact that the intersection problem is

NP-complete if S is the set of tropical hypersurfaces or the set of

polytopes on Θ.
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(2.3) A linear model example for NP-Hardness

(i) θ = coefficient vector of linear model

(ii) Q = all tasks with empirical measures

P̂t(x , y) =
1

nt

nt∑
i=1

δ(y t
i ,x

t
i )

(y , x), for nt ∈ N, y t
i ∈ R, x ti ∈ Rd

(iii) C = ε-upper bound criterion in the L1-norm:

C(θ, P̂) =

{
1 if 1

nt

∑t
i=1 |y t

i − θT x ti | ≤ ε
0 otherwise.

=⇒ Sat∩ contains all polytopes in Θ, since

Satt =
{
θ ∈ Θ : y t − θTX t ≤ ε · nt and θTX t − y t ≥ ε · nt

}
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(2.3) A linear model example for NP-Hardness

Q: So what? Who cares about simple Linear Models?

Corollary 1

If deciding whether A ∩ B = ∅ for A,B ∈ S is computationally at least as

hard as for the collection of polytopes in Θ, optimal CL is NP-hard.

Meaning of Corollary 1:

Complicated nonlinear models / Neural Networks also NP-hard
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(3.1) Defining Perfect Memory

Intuition: We could encounter any Satt ∈ SatQ at task t

=⇒ Need all information in ∩t−1i=1Sati from tasks 1, . . . t − 1
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(3.1) Defining Perfect Memory

Q: Smallest necessary informational content in ∩ti=1Sati?

=⇒ The subset of ∩ti=1Sati without equivalent/redundant elements!

Definition 1 (Equivalence set (≈ ’redundance class’))

For θ ∈ Θ, define S(θ) = {A ∈ SatQ : θ ∈ A} and the equivalence sets

E(θ) =
⋂

A∈S(θ)

A.
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(3.1) Defining Perfect Memory

Perfect Memory = store element of each E(θ) s.t. E(θ) ⊆ ∩ti=1Sati
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(3.2) CL Memory Requirements

Lemma 4

For optimal CL algorithms, there exists h : Θ× i → 2Θ for which

h(θt , It) = Ct is s.t. Ct ∩ A = ∅ ⇐⇒ ∩ti=1Sati ∩ A = ∅, ∀A ∈ SatQ.

Meaning of Lemma 4:

Optimal CL memorizes enough to solve set intersection problem

Corollary 2

If C and Q are s.t. E(θ) ∈ SatQ for all θ ∈ Θ, any optimal CL

algorithm has perfect memory.

Meaning of Corollay 2:

You can only solve the set intersection problem with perfect memory
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(3.3) A linear model example for Perfect Memory

(i) θ = coefficient vector of linear model

(ii) Q = all tasks with empirical measures

P̂t(x , y) =
1

nt

nt∑
i=1

δ(y t
i ,x

t
i )

(y , x), for nt ∈ N, y t
i ∈ R, x ti ∈ Rd

(iii) C = ε-upper bound criterion in the L1-norm:

C(θ, P̂) =

{
1 if 1

nt

∑t
i=1 |y t

i − θT x ti | ≤ ε
0 otherwise.

=⇒ SatQ contains {θ} = E(θ) for all θ ∈ Θ.

(Take X t , y t s.t. y t − εnt = θTX t is solved by unique θ ∈ Θ)
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(4) Practical Ramifications: Memorization vs Regularization

Implications for algorithm design:

(1) Optimal CL = moving ∩t−1i=1Sati −→ ∩t−1i=1Sati ∩ Satt

(2) We need perfect memory to do that without errors

⇒ memorization should work better than regularization
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Summary

Theory:

(1) Connects set theory to catastrophic forgetting in CL

(2) Avoiding catastrophic forgetting (= optimal CL)

(A) is NP-hard;

(B) needs perfect memory.

Practical ramifications:

(A) CL algorithms = heuristics for NP-hard problem

(B) CL with memorization > CL with regularization
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Contact me/follow my research at

E-mail address: j.knoblauch@warwick.ac.uk

Personal Website: https://jeremiasknoblauch.github.io/

Twitter Handle: @LauchLab
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