

The Alan Turing Institute

Optimization-centric Generalizations of Bayesian Inference

Generalized Variational Inference & beyond

November 5, 2021

Biometrika Fellow @ Department of Statistical Science, UCL Visiting Researcher @ The Alan Turing Institute for Data Science and AI

- (1) Bayesian inference = a single optimization problem $P \in \mathcal{P}$
- (2) Optimization problem $P \in P$ needs strict assumptions
- (3) These assumptions are often violated in Machine Learning (ML)
- (4) Many other optimization problems $P' \in \mathcal{P}$ you could solve instead
- (5) In ML, we would often do better to solve $P' \in \mathcal{P}$ rather than P

Structure

(1) All about that Bayes

- (1.1) Bayes' rule
- (1.2) Assumptions of Bayesian inference
- (1.3) Machine Learning, Assumptions & Bayesian inference

(2) An optimization-centric generalization

- (2.1) Bayesian inference is optimization
- (2.2) Modularity & Interpretation
- (2.3) A natural generalization
- (2.4) Special cases of note
- (2.5) Generalized Variational Inference

(3) Properties of this generalization

- (3.1) 'Sanity checks': existence, uniqueness, consistency
- (3.2) Axiomatic foundations
- (3.3) Relation to VI, PAC-Bayes bounds, power posteriors, ...
- (3.4) Closed Forms

(4) Applications

- (4.1) Robustness: prior misspecification
- (4.2) Robustness: likelihood misspecification
- (4.3) Simplifying Bayesian computation

Main focus (parts 1+2):

JK, Jack Jewson, & Theo Damoulas; Generalized Variational Inference: Three Arguments for deriving new Posteriors, currently minor revisions at JMLR https://arxiv.org/abs/1904.02063

literature I touch upon (parts 3+4):

Takuo Matsubara, JK, Francois-Xavier Briol, & Chris Oates; Generalised Bayesian Inference with Stein Discrepancies: Robust Bayes for Models with an Intractable Likelihood, submitted to JRSS-B 2021 https://arxiv.org/abs/2104.07359

JK; Frequentist Consistency of Generalized Variational Inference, 2019 https://arxiv.org/abs/1904.04946

JK; Robust Deep Gaussian Processes, 2019 https://arxiv.org/abs/1904.02303

JK, Jack Jewson, & Theo Damoulas; Doubly Robust Bayesian Inference for Non-Stationary Streaming Data using β -Divergences, NeurIPS 2018 https://arxiv.org/abs/1806.02261

Sebastian Schmon, Patrick Cannon, & JK; Generalized Posteriors in Approximate Bayesian Computation, AABI 2021 https://arxiv.org/abs/2011.08644

Pierre Alquier; Non-exponentially weighted aggregation: regret bounds for unbounded losses, 2020 https://arxiv.org/abs/2009.03017 Non-exhaustive list of important literature I do not touch upon:

Alexander A. Alemi; Variational Predictive Information Bottleneck; AABI 2019 https://arxiv.org/abs/1910.10831

Jeffrey Miller; Asymptotic normality, concentration, and coverage of generalized posteriors, working paper 2019 (arxiv 1907.09611)

Badr-Eddine Chérief-Abdellatif; Contributions to the theoretical study of variational inference and robustness, PhD thesis 2020

• •

(1) All about that Bayes

Ingredients:

- *n* observations $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$,
- prior $\pi(\theta)$,
- likelihood terms $\{p(x_i|\theta)\}_{i=1}^n$

Output (via Bayes' Rule) = posterior belief:

Inference interpretation = belief updates:

$$\pi(\theta) \xrightarrow{\quad \text{Update with Bayes' rule via } \{ \frac{p(\mathsf{x}_i|\theta)}{i=1} \}_{i=1}^n} q_n^*(\theta)$$

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

(1)

1.) Likelihoods are correct, i.e. $p(x_i|\theta^*) \stackrel{!}{=} d\mathbb{P}(x_i)$ for some unknown θ^*

2.) Prior encodes the complete prior information on θ^* 3.) Closed forms/Infinite computational power, so that one can work with the posterior. $q_n^*(\theta) \propto \pi(\theta) \prod_{i=1}^n p(x_i | \theta)$

(1.3) Machine Learning & Bayesian inference

Traditional role of Statistics in science:

Modern Machine Learning:

(1.3) Machine Learning & Bayesian inference

Conclusion I: Assumptions of Bayesian inference fit traditional science

- (1) Correct Likelihoods: Domain Experts help design these
- (2) Priors encoding complete information: Experiments/studies build on prior work, which can often be summarized in distributions.
 (Prior elicitation is an entire field within Bayesian statistics.)
- (3) **Closed forms/infinite computational power:** Data collection is expensive; computational cost much less important

Conclusion II: ML violates assumptions of Bayesian Inference

- (1) Correct Likelihoods: Likelihoods are defined before data is seen
- (2) **Priors encoding complete information:** Priors often impossible to elicit (e.g., Bayesian Neural Networks)
- (3) **Closed forms/infinite computational power:** Violated by virtually any ML application

(2) An optimization-centric generalization

(2.1) Bayesian inference $\stackrel{!}{=}$ optimization

The Bayes posterior $q_n^*(\theta) \propto \pi(\theta) \prod_{i=1}^n p(x_i | \theta)$ uniquely solves

$$q_{n}^{*}(\theta) = \underset{q \in \mathcal{P}(\Theta)}{\operatorname{arg\,min}} \left\{ \underbrace{\mathbb{E}_{q(\theta)} \left[\sum_{i=1}^{n} -\log(p(x_{i}|\theta)) \right]}_{\text{minimized by } q(\theta) = \delta_{\hat{\theta}_{n}}(\theta), \ \hat{\theta}_{n} = \mathsf{MLE}} + \underbrace{\underset{\text{minimized by } q = \pi}{\operatorname{KLD} \left(q | | \pi\right)}}_{\text{minimized by } q = \pi} \right\}, \quad (2)$$

Notation:

- $\mathcal{P}(\Theta) =$ all probability distributions on Θ
- KLD = Kullback-Leibler divergence = $\mathbb{E}_{q(\theta)} \left[\log q(\theta) \log \pi(\theta) \right]$

Inference interpretation = regularized loss-minimization:

- $-\log(p(x_i|\theta)) =$ **loss** of θ for x_i
- Inference = regularizing MLE $\hat{ heta}_n$ with $ext{KLD}(q||\pi)$

$$q_{n}^{*}(\theta) = \operatorname{argmin}_{q \in \mathcal{P}(\Theta)} \left\{ \underbrace{\mathbb{E}_{q(\theta)} \left[\sum_{i=1}^{n} -\log(p(x_{i}|\theta)) \right]}_{\text{minimized by } q(\theta) = \delta_{\theta_{i}}(\theta), \hat{\theta}_{n} = \text{MLE}} + \underbrace{\text{KLD}(q||\pi)}_{\text{minimized by } q = \pi} \right\}$$
3.) Reduce computational cost by optimizing over a smaller set $\Pi \subset \mathcal{P}(\Theta)$

$$(= \text{Variational Inference!})$$
2.) Guard against likelihood misspecification by using robust model scoring rules $\mathcal{L}(\cdot)$ instead of $-\log(\cdot)$
1.) Suppress ill-informed priors by choosing a weaker regularizing divergence $D(\cdot||\pi)$ instead of $\text{KLD}(\cdot||\pi)$

(2.3) A natural generalization

$$q_n^*(\theta) = \operatorname*{arg\,min}_{q \in \Pi} \left\{ \underbrace{\mathbb{E}_{q(\theta)} \left[\sum_{i=1}^n \ell(\theta, x_i) \right]}_{\text{minimized by } \delta_{\theta_n}(\theta)} + \underbrace{\mathcal{D}(q || \pi)}_{\text{minimized by } q = \pi} \right\} = P(\ell, \mathcal{D}, \Pi)$$

An optimization-centric generalization of Bayesian inference:

- (1) $D(\cdot ||\pi) =$ any divergence regularizer penalizing deviations from π
- (2) $\ell(\theta, \mathbf{x}) =$ any loss assessing how well θ and \mathbf{x} fit together
- (3) $\Pi \subseteq \mathcal{P}(\Theta) =$ some subset of all probability distributions on Θ

 \implies Shorthand Notation: $P(\ell, D, \Pi)$

(2.4) Special cases of note

$$q_n^*(\boldsymbol{\theta}) = \arg\min_{q \in \Pi} \left\{ \underbrace{\mathbb{E}_{q(\boldsymbol{\theta})} \left[\sum_{i=1}^n \boldsymbol{\ell}(\boldsymbol{\theta}, \boldsymbol{x}_i) \right]}_{\text{minimized by } \delta_{\hat{\boldsymbol{\theta}}_n}(\boldsymbol{\theta})} + \underbrace{\boldsymbol{D} \left(\boldsymbol{q} | | \pi \right)}_{\text{minimized by } q = \pi} \right\} = P(\boldsymbol{\ell}, \boldsymbol{D}, \boldsymbol{\Pi})$$

(Some) special cases of interest:

Terminology:

- Presented so far: a conceptual generalization of Bayesian inference
- Generalized Variational Inference (GVI) = computable inference algorithms based on that generalization
- \implies means that $\Pi = Q$ for some variational family Q.

Open questions:

- General properties of this generalisation?
- Applications/use cases?

\implies answered next

Answers to three questions:

- (3.1) 'Is this even reasonable?' (sanity checks)
- (3.2) 'Okay, but under which conditions is it reasonable?' (axiomatic justification)
- (3.3) 'Fine, but can it help me understand existing methods?' (VI, PAC-Bayes bounds, power posteriors, ...)

$$q_n^*(\boldsymbol{\theta}) = \operatorname*{arg\,min}_{q \in \boldsymbol{\Pi}} \left\{ \mathbb{E}_{q(\boldsymbol{\theta})} \left[\sum_{i=1}^n \boldsymbol{\ell}(\boldsymbol{\theta}, \boldsymbol{x}_i) \right] + \boldsymbol{D}(q||\pi) \right\} = P(\boldsymbol{\ell}, \boldsymbol{D}, \boldsymbol{\Pi})$$

Existence: If Π is convex and chosen so that $q \mapsto \mathbb{E}_{q(\theta)} \left[\sum_{i=1}^{n} \ell(\theta, x_i) \right]$ and $q \mapsto \mathcal{D}(q||\pi)$ are continuous on Π , then the minimum exists whenever $q \mapsto \mathcal{D}(q||\pi)$ is convex.

 \implies basic convex analysis on Banach spaces

Uniqueness: Guaranteed if q_n^* exists and $q \mapsto D(q||\pi)$ is *strictly* convex \implies basic convex analysis on Banach spaces

$$q_n^*(\boldsymbol{\theta}) = \operatorname*{arg\,min}_{q \in \boldsymbol{\Pi}} \left\{ \mathbb{E}_{q(\boldsymbol{\theta})} \left[\sum_{i=1}^n \boldsymbol{\ell}(\boldsymbol{\theta}, \mathsf{x}_i) \right] + \boldsymbol{D}(q || \pi) \right\} = P(\boldsymbol{\ell}, \boldsymbol{D}, \boldsymbol{\Pi})$$

Beyond continuity & convexity of $q \mapsto D(q||\pi)$? You can still show existence and uniqueness without convex regularizers [need that losses are norm-coercive or Θ is compact; Arguments not that basic; see Lemma 1 in Knoblauch (2019)]

Consistency: Guaranteed under relatively mild regularity conditions; arguments are unfortunately quite complicated and rely on Γ -convergence, see Knoblauch (2019).

 \implies Idea of Γ -convergence \approx 'if a sequence of objectives Γ -converge, then their minimizers also converge (in a suitable sense, usually weakly)'

(3.2) Axiomatic justification

Q: Does this generalisation result from 'reasonable' axioms?

Axiom 1 (Variational representation)

The posterior $q^* \in \mathcal{P}(\Theta)$ solves an optimization problem over some space $\Pi \subseteq \mathcal{P}(\Theta)$. For any finite sample $\{x_i\}_{i=1}^n$, the optimization problem seeks to jointly minimize two criteria:

- (i) An in-sample loss $\sum_{i=1}^{n} \ell(\theta, x_i)$ to be expected under $q^*(\theta)$.
- (ii) The deviation from the prior $\pi(\theta)$ as measured by some statistical divergence *D*.

Theorem 1 (Form 1)

Under Axiom 1, posterior belief distributions can be written as

$$q^*(\boldsymbol{\theta}) = \operatorname*{arg\,min}_{q \in \Pi} \left\{ f\left(\mathbb{E}_{q(\boldsymbol{\theta})} \left[\sum_{i=1}^n \ell(\boldsymbol{\theta}, x_i) \right], D(q||\pi) \right) \right\},$$

where $f : \mathbb{R}^2 \to \mathbb{R}$ is some function that may depend on $\pi, \Pi, \ell, \{x_i\}_{i=1}^n$, 19/45 or D. Optimization-centric Generalizations of Bayesian inference

Axiom 2 (Recovers Bayesian Posteriors)

Function f in Theorem 1 does not depend on π , Π , ℓ , $\{x_i\}_{i=1}^n$, or D. Further, q^* is the Gibbs posterior if D = KLD, $\Pi = \mathcal{P}(\Theta)$.

Theorem 2

Suppose the posterior belief $q^* \in \mathcal{P}(\Theta)$ satisfies Axioms 1 and 2. Then the objective of Theorem 1 is uniquely identified as f(x, y) = x + y so that

$$q^{*}(\boldsymbol{\theta}) = \operatorname*{arg\,min}_{q \in \boldsymbol{\Pi}} \left\{ \mathbb{E}_{q(\boldsymbol{\theta})} \left[\sum_{i=1}^{n} \boldsymbol{\ell}(\boldsymbol{\theta}, \mathsf{x}_{i}) \right] + \boldsymbol{D}\left(q || \pi\right) \right\} = P(\boldsymbol{\ell}, \boldsymbol{D}, \boldsymbol{\Pi})$$

(3.3) Relation to VI / PAC-Bayes / power posteriors

(a) DVI (= Discrepancy VI = projection-centric) interpretation of VI

(b) GVI (= optimization-centric) Interpretation of VI

Proposition 1 (Optimality of standard VI)

Relative to the infinite-dimensional optimization problem over $\mathcal{P}(\Theta)$ characterizing the Gibbs posterior and a fixed variational family Π , standard VI produces the optimal solution (i.e. posterior belief) in Π .

Proof.

VI posteriors are minima of the same objective as the full Bayesian posterior—but constrained to some subset Π .

Proposition 2 (Suboptimality of alternative methods)

Relative to the infinite-dimensional problem over $\mathcal{P}(\Theta)$ characterizing Gibbs posteriors, and relative to a fixed finite-dimensional variational family Π , non-standard VI methods produce sub-optimal solutions (i.e., posterior beliefs).

(3.3) Relation to VI / PAC-Bayes / power posteriors

Figure 2 – Top row: marginal posteriors for location parameters μ_1, μ_2 in 2D Bayesian Gaussian Mixture Model. **Bottom left:** same marginal for μ_1 as we increase $|\mu_1 - \mu_2|$. **Bottom right:** posterior predictives.

(3.3) Relation to VI / PAC-Bayes / power posteriors

E.g., McAllester's (original) PAC-Bayes bound: if $x_i \stackrel{iid}{\sim} \mu$ so that true risk is $R(\theta) = \mathbb{E}_{x \sim \mu}[\ell(\theta, x)]$ and $a \leq \ell \leq b$, then uniformly for all $q \in \mathcal{P}(\Theta)$ with probability at least $1 - \varepsilon$,

$$\mathbb{E}_{q(\boldsymbol{\theta})}\left[R(\boldsymbol{\theta})\right] \leq \mathbb{E}_{q(\boldsymbol{\theta})}\left[\frac{1}{n}\sum_{i=1}^{n}\ell(\boldsymbol{\theta}, x_i)\right] + \sqrt{\frac{\operatorname{KLD}(q, \pi) + \log\frac{2\sqrt{n}}{\varepsilon}}{2n}}$$

I.e., we can minimize the righthand side over $q \in \mathcal{P}(\Theta)$ to find that **the tightest generalisation bound** has a solution of the form $P(\ell, D_{MCA}, \mathcal{P}(\Theta))$ with

$$D_{\mathsf{McA}}(q\|\pi) = \sqrt{n} \cdot \left(\sqrt{\frac{\mathrm{KLD}(q,\pi) + \log \frac{2\sqrt{n}}{\varepsilon}}{2}} - \sqrt{\frac{\log \frac{2\sqrt{n}}{\varepsilon}}{2}}\right)$$

 $\implies \mathsf{PAC}\operatorname{-Bayes} \stackrel{!}{=} a \text{ way to justify non-standard prior regularization, e.g.}$ Bégin et al. (2016) [Rényi's α -divergence], Alquier & Guedj (2018), Ohnishi & Honorio (2020) [f-divergences]

24 / 45

Power posteriors/'cold posteriors': For some $\beta > 0$, given by

$$q^{*}(\theta) \propto \pi(\theta) \prod_{i=1}^{n} p(x_{i}|\theta)^{\beta} = P(-\log p(\cdot|\theta) \cdot \beta, \text{KLD}, \mathcal{P}(\Theta))$$
(3)
= $P(-\log p(\cdot|\theta), \text{KLD} \cdot \frac{1}{\beta}, \mathcal{P}(\Theta))$

Cold posteriors: $\beta > 1$, i.e. more weight on data rather than prior \implies often used for NNs, where our priors are extremely poor. **Power posteriors:** $\beta < 1$, i.e. more weight on prior rather than data \implies often used when likelihoods are poorly misspecified and advertised as 'robust' (... it's always more robust as $n \rightarrow \infty$, but if *n* is small, your robustness properties will depend a lot on the prior)

Method	$\ell(\boldsymbol{\theta}, x_i)$	D	П
Standard Bayes	$-\log p(x_i \theta)$	KLD	$\mathcal{P}(\mathbf{\Theta})$
Power Likelihood Bayes	$-\log p(x_i \boldsymbol{\theta})$	$\frac{1}{w}$ KLD, $w < 1$	$\mathcal{P}(\Theta)$
Composite Likelihood Bayes	$-w_i \log p(x_i \boldsymbol{\theta})$	KLD	$\mathcal{P}(\mathbf{\Theta})$
Divergence-based Bayes	divergence-based ℓ	KLD	$\mathcal{P}(\mathbf{\Theta})$
PAC/Gibbs Bayes	any ℓ	any D	$\mathcal{P}(\mathbf{\Theta})$
VAE	$-\log p_{\boldsymbol{\zeta}}(x_i \boldsymbol{\theta})$	KLD	Q
β -VAE	$-\log p_{\boldsymbol{\zeta}}(x_i \boldsymbol{\theta})$	eta · KLD, eta > 1	Q
Bernoulli-VAE	continuous Bernoulli	KLD	Q
Standard VI	$-\log p(x_i \theta)$	KLD	Q
Power VI	$-\log p(x_i \boldsymbol{\theta})$	$\frac{1}{w}$ KLD, $w < 1$	Q
Utility VI	$-\log p(x_i \boldsymbol{\theta}) + \log u(h, x_i)$	KLD	Q
Regularized Bayes	$-\log p(x_i \theta) + \phi(\theta, x_i)$	KLD	Q
Gibbs VI	any ℓ	KLD	Q
Generalized VI	any ℓ	any D	Q

(3.4) Closed Forms

Well-known: Gibbs posteriors

$$P(\ell, \mathsf{KLD}, \mathcal{P}(\Theta)) \propto \pi(\theta) \cdot \exp\left\{-\sum_{i=1}^{n} \ell(\theta, x_i)\right\}$$

Unknown (until a few months ago): What if $D \neq \text{KLD}$? \implies We now know the general form if D an ϕ -divergence

Proposition 3.1. Assume that ϕ is differentiable, strictly convex and define $\tilde{\phi}$ on \mathbb{R} by $\tilde{\phi}(x) = \phi(x)$ if $x \ge 0$ and $\tilde{\phi}(x) = +\infty$ otherwise. Then

$$\tilde{\phi}^* = \sup_{x \in \mathbb{R}} [xy - \tilde{\phi}(x)] = \sup_{x \ge 0} [xy - \phi(x)]$$
(3.1)

is differentiable and for any $y \in \mathbb{R}$,

$$\nabla \tilde{\phi}^{*}(y) = \underset{x \ge 0}{\operatorname{argmax}} \{xy - \phi(x)\}.$$
 (3.2)

Assume moreover than $\tilde{\phi}^*(\lambda - a) - \lambda \to \infty$ when $\lambda \to \infty$, for any $a \ge 0$. Then

$$\lambda_t \in \underset{\lambda \in \mathbb{R}}{\operatorname{argmin}} \left\{ \int \tilde{\phi}^* \left(\lambda - \eta \sum_{s=1}^{t-1} \ell_s(\theta) \right) \pi(\mathrm{d}\theta) - \lambda \right\}$$
(3.3)

exists, and

$$\rho^{t}(\mathrm{d}\theta) = \nabla \tilde{\phi}^{*}\left(\lambda_{t} - \eta \sum_{s=1}^{t-1} \ell_{s}(\theta)\right) \pi(\mathrm{d}\theta)$$
(3.4)

minimizes (1.4).

(3.4) Closed Forms

Two examples:

Example 3.2 (χ^2 -divergence). We come back to the example $\phi(x) = x^2 - 1$, $D_{\phi}(\rho||\pi) = \chi^2(\rho||\pi)$ the chi-squared divergence. In this case, $\phi^*(y) = (y^2/4)\mathbf{1}_{\{y \ge 0\}}$ and so $\nabla \tilde{\phi}^*(y) = (y/2)_+$. This leads to

$$\rho^{t}(\mathrm{d}\theta) = \left[\frac{\lambda_{t} - \eta \sum_{s=1}^{t-1} \ell_{s}(\theta)}{2}\right]_{+} \pi(\mathrm{d}\theta).$$
(3.7)

In this case, λ_t is not available in closed form, but it is the only constant that will make the above sum to 1.

Example 3.3 (*p*-power divergence). More generally, consider $\phi(x) = x^p - 1$. In this case $\nabla \tilde{\phi}^*(y) = (y/p)_+^{1/(p-1)}$. This leads to

$$\rho^{t}(\mathrm{d}\theta) = \left[\frac{\lambda_{t} - \eta \sum_{s=1}^{t-1} \ell_{s}(\theta)}{p}\right]_{+}^{\frac{1}{p-1}} \pi(\mathrm{d}\theta).$$
(3.8)

Problems that can be tackled:

- Robustness to poor priors
- Robustness to poor likelihoods
- Simplified computation
- ...

$$q^{*}(\boldsymbol{\theta}) = \arg\min_{q \in \boldsymbol{\Pi}} \left\{ \mathbb{E}_{q(\boldsymbol{\theta})} \left[\sum_{i=1}^{n} \boldsymbol{\ell}(\boldsymbol{\theta}, \boldsymbol{x}_{i}) \right] + \boldsymbol{D}(q||\pi) \right\} = P(\boldsymbol{\ell}, \boldsymbol{D}, \boldsymbol{\Pi})$$

What we want: D that behaves like KLD if π is reasonable, but ignores it if the data don't fit the prior at all

First idea: down-weight D = KLD like in cold posteriors

 \implies Problem: Now, not being certain of your prior amounts to being more certain in your posterior....

Q: Is there an alternative?

 \implies For reasons we don't understand fully[†], Rényi's α -divergence seems to do behave exactly as we want! (small loss of efficiency observed if prior is well-specified)

[†]some limited theoretical results in Theorem 14 of Knoblauch et al. (2019)

(4.1) Robustness to prior misspecification

Figure 3 – The prior for the coefficients is a Normal Inverse Gamma distribution given by $\mu \sim \mathcal{NI}^{-1}(\mu_{\pi} \cdot \mathbf{1}_{d}, \mathbf{v}_{\pi} \cdot \mathbf{I}_{d}, \mathbf{a}_{\pi}, \mathbf{b}_{\pi})$ with $\mathbf{v}_{\pi} = 4 \cdot \mathbf{I}_{d}, \mathbf{a}_{\pi} = 3, \mathbf{b}_{\pi} = 5$ and various values for μ_{π} . For all posteriors, the loss ℓ is the correctly specified negative log likelihood; all posteriors lie inside a mean field normal family \mathcal{Q} .

(4.1) Robustness to prior misspecification

Example: Bayesian Neural Networks

Figure 4 – Top: Negative test log likelihoods. Bottom row: Test RMSE.

What it means: [Taking definition from Hooker & Vidyashankar] Consider ε -contamination model of size $\varepsilon \in (0, 1)$

$$\mathbb{P}_{n,\epsilon,y} = (1-\epsilon)\mathbb{P}_n + \epsilon \delta_y; \quad y \in \mathcal{X}$$

and write $\ell_{\varepsilon,n}(\theta) = \mathbb{E}_{x \sim \mathbb{P}_{n,\epsilon,y}}[\ell(\theta, x)]$. Define the posterior influence function as

$$\mathsf{PIF}(y,\theta,\mathbb{P}_n):=\frac{\mathrm{d}}{\mathrm{d}\epsilon}P(\ell_{\varepsilon,n}(\theta),\boldsymbol{D},\boldsymbol{\Pi})|_{\epsilon=0}.$$

The posterior $P(\ell_{\varepsilon,n}(\theta), \mathbf{D}, \mathbf{\Pi})$ is called *globally bias-robust* if $\sup_{\theta \in \Theta} \sup_{y \in \mathcal{X}} |\operatorname{PlF}(y, \theta, \mathbb{P}_n)| < \infty$, meaning that the sensitivity of the generalised posterior to the contaminant y is limited.

(4.2) Robustness to likelihood misspecification

What it means:

Optimization-centric Generalizations of Bayesian inference

General Observation: log likelihoods pprox minimize the KLD

$$q_n^*(\theta) = \operatorname*{arg\,min}_{q \in \Pi} \left\{ \mathbb{E}_{q(\theta)} \left[\sum_{i=1}^n -\log p(x_i | \theta) \right] + \operatorname{KLD}(q | | \pi) \right\}$$
$$= \operatorname{arg\,min}_{q \in \Pi} \left\{ \mathbb{E}_{q(\theta)} \left[\frac{1}{n} \sum_{i=1}^n -\log \frac{p(x_i | \theta)}{p_0(x_i)} \right] - \frac{1}{n} \sum_{i=1}^n \log p_0(x_i) + \frac{1}{n} \operatorname{KLD}(q | | \pi) \right\}$$
$$= \operatorname{arg\,min}_{q \in \Pi} \left\{ \mathbb{E}_{q(\theta)} \left[\underbrace{\frac{1}{n} \sum_{i=1}^n -\log \frac{p(x_i | \theta)}{p_0(x_i)}}_{\approx \operatorname{KLD}(p_0 | | p(\cdot | \theta))} \right] + \frac{1}{n} \operatorname{KLD}(q | | \pi) \right\}$$

Obvious question: What are the (dis)advantages of minimizing other discrepancies between p_0 and $p(\cdot|\theta)$ instead?

General Answer: Decreases statistical efficiency, increases robustness

Some applications of robust divergences as losses:

- Reducing false detection of changepoints
- Improving performance of deep Gaussian Processes
- Graphical models
- ...

Many, many more... — worth considering every time your likelihood is at best a reasonable guess.

(4.2) Outlier-Robust Changepoint Detection

Using standard Bayesian On-line Changepoint Detection

(4.2) Outlier-Robust Changepoint Detection

Using the β -divergence for Robust Changepoint Detection

(4.2) Likelihoods with Deep Gaussian Processes

 γ -divergences for DGP regression³

Figure 5 - Top row: Negative test log likelihoods. Bottom row: Test RMSE.

(4.3) Improving Bayesian computation

Idea: Find losses $\tilde{\ell} \neq \ell$ s.t. CompTime $[P(\tilde{\ell}, D, \Pi)] <<$ CompTime $[P(\ell, D, \Pi)]$ **Example 1:** Approximate Bayesian Computation (ABC). **Step 1:** $\theta \sim \pi(\theta)$ **Step 2:** sample $x_{\text{fake}} \sim p(x_{\text{fake}}|\theta)$ **Step 3:** keep θ if $D(x_{\text{fake}}, x_{\text{observed}}) < \varepsilon$; discard otherwise. \implies $q(\theta|x_{\text{observed}}) \approx q_{\text{abc}}(\theta|x_{\text{observed}}) \propto \int \mathbb{1}_{[D(x_{\text{false}}, x_{\text{observed}}) \leq \epsilon]} p(x_{\text{false}}|\theta) \pi(\theta) dx_{\text{false}}$ **Usually:** $q_{abc}(\theta | x_{observed})$ interpreted as approximation to $q(\theta | x_{observed})$. Alternative: $q_{abc}(\theta|x_{observed}) \propto \pi(\theta) \exp\{-\underbrace{L_n(\theta, x_{observed})}_{\theta \in \mathcal{A}}\}$ $= \int \mathbf{1}_{[D(x_{\mathsf{fake}}, x_{\mathsf{observed}}) < \varepsilon]} p(x_{\mathsf{fake}} | \theta)$ \implies simulator error model $err(x_{fake}, x_{observed}) = \int 1_{[D(x_{fake}, x_{observed}) < \varepsilon]}$ \implies 'smoother' error models more sample-efficient (e.g., *err* =normal)

(4.3) Improving Bayesian computation

Idea: Find losses $\tilde{\ell} \neq \ell$ s.t. CompTime $[P(\tilde{\ell}, \boldsymbol{D}, \boldsymbol{\Pi})] <<$ CompTime $[P(\ell, \boldsymbol{D}, \boldsymbol{\Pi})]$

Example 2: Intractable Likelihoods/Energy-based models **Challenge:** Likelihoods with unknown normalisers, i.e.

$$p(x|\theta) = \underbrace{\widehat{p}(x|\theta)}_{\text{known}} \cdot \underbrace{Z(\theta)}_{\text{unknown}}$$

 \Longrightarrow standard Bayesian posterior 'doubly intractable'

Solution: loss depending on $p(x|\theta)$ only via $\nabla_x p(x|\theta) \stackrel{!}{=} \nabla_x \hat{p}(x|\theta)$

- \Longrightarrow Stein's method! Operationalisable via Kernel Stein Discerpancies
- \implies Makes posteriors 'singly intractable'

... Question: but can we do even better?!

(4.3) Improving Bayesian computation

Answer: Yes, whenever $p(x|\theta)$ is part of the exponential family!

- \implies Then, we get **closed forms** if π is normal!
- \Longrightarrow Closed forms instead of 'doubly intractable' posteriors
- \implies Added bonus: robustness to model misspecification!

$$p(x|\theta) \propto \exp\left(-\sum_{i} \theta_{i} \exp(x_{i}) - \sum_{i < j} \theta_{i,j} \exp(x_{i}) \exp(x_{j})\right) \times \exp\left(\sum_{i} x_{i}\right)$$

Summary

- (1) Bayesian inference = a single optimization problem $P \in \mathcal{P}$
- (2) Optimization problem $P \in P$ needs strict assumptions
- (3) These assumptions are often violated in Machine Learning (ML)
- (4) Many other optimization problems P' ∈ P you could solve instead (Even though we still know relatively little about them!)
- (5) In ML, we would often do better to solve ${m P}' \in {\mathcal P}$ rather than ${m P}$

Also—And perhaps even more importantly:

- The study of $P' \in \mathcal{P}$ has just begun! Get involved! :)
- If I managed to inspire you to work on these problems, get in touch!
 I love to collaborate, and there are enough open problems for a lifetime! :)

E-mail address:

Personal Website:

j.knoblauch@warwick.ac.uk

https://jeremiasknoblauch.github.io/

@LauchLab **Twitter Handle:**

