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What you should take away from today

(1) Bayesian inference = a single optimization problem P ∈ P
(2) Optimization problem P ∈ P needs strict assumptions
(3) These assumptions are often violated in Machine Learning (ML)
(4) Many other optimization problems P ′ ∈ P you could solve instead
(5) In ML, we would often do better to solve P ′ ∈ P rather than P
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(1.1) Bayes’ rule
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(2.2) Modularity & Interpretation
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(2.5) Generalized Variational Inference
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Literature I will talk about

Main focus (parts 1+2):
JK, Jack Jewson, & Theo Damoulas; Generalized Variational Inference: Three Arguments for deriving new Posteriors, currently minor
revisions at JMLR https://arxiv.org/abs/1904.02063

literature I touch upon (parts 3+4):
Takuo Matsubara, JK, Francois-Xavier Briol, & Chris Oates; Generalised Bayesian Inference with Stein Discrepancies: Robust Bayes for
Models with an Intractable Likelihood, submitted to JRSS-B 2021 https://arxiv.org/abs/2104.07359

JK; Frequentist Consistency of Generalized Variational Inference, 2019 https://arxiv.org/abs/1904.04946

JK; Robust Deep Gaussian Processes, 2019 https://arxiv.org/abs/1904.02303

JK, Jack Jewson, & Theo Damoulas; Doubly Robust Bayesian Inference for Non-Stationary Streaming Data using β-Divergences,
NeurIPS 2018 https://arxiv.org/abs/1806.02261

Sebastian Schmon, Patrick Cannon, & JK; Generalized Posteriors in Approximate Bayesian Computation, AABI 2021
https://arxiv.org/abs/2011.08644

Pierre Alquier; Non-exponentially weighted aggregation: regret bounds for unbounded losses, 2020 https://arxiv.org/abs/2009.03017

Non-exhaustive list of important literature I do not touch upon:
Alexander A. Alemi; Variational Predictive Information Bottleneck; AABI 2019 https://arxiv.org/abs/1910.10831

Jeffrey Miller; Asymptotic normality, concentration, and coverage of generalized posteriors, working paper 2019 (arxiv 1907.09611)
Badr-Eddine Chérief-Abdellatif; Contributions to the theoretical study of variational inference and robustness, PhD thesis 2020
. . .
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(1) All about that Bayes
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(1.1) Bayes’ Rule: Interpretation as belief updates

Ingredients:

• n observations x = (x1, x2, . . . , xn)T ,
• prior π(θ),
• likelihood terms {p(xi |θ)}n

i=1

Output (via Bayes’ Rule) = posterior belief:

q∗n (θ)︸ ︷︷ ︸
posterior

∝ π(θ)︸︷︷︸
prior

∏n
i=1 p(xi |θ)︸ ︷︷ ︸
likelihood terms

(1)

Inference interpretation = belief updates:

π(θ)
Update with Bayes’ rule via {p(xi |θ)}n

i=1
−−−−−−−−−−−−−−−−−−−−−−−−−→ q∗n (θ)
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(1.2) Three assumptions underlying Bayesian inference
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(1.3) Machine Learning & Bayesian inference
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(1.3) Machine Learning & Bayesian inference

Conclusion I: Assumptions of Bayesian inference fit traditional science

(1) Correct Likelihoods: Domain Experts help design these
(2) Priors encoding complete information: Experiments/studies build

on prior work, which can often be summarized in distributions.
(Prior elicitation is an entire field within Bayesian statistics.)

(3) Closed forms/infinite computational power: Data collection is
expensive; computational cost much less important

Conclusion II: ML violates assumptions of Bayesian Inference

(1) Correct Likelihoods: Likelihoods are defined before data is seen
(2) Priors encoding complete information: Priors often impossible to

elicit (e.g., Bayesian Neural Networks)
(3) Closed forms/infinite computational power: Violated by virtually

any ML application
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(2) An optimization-centric generalization
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(2.1) Bayesian inference != optimization

The Bayes posterior q∗n (θ) ∝ π(θ)
∏n

i=1 p(xi |θ) uniquely solves

q∗n (θ) = arg min
q∈P(Θ)

{
Eq(θ)

[ n∑
i=1
− log(p(xi |θ))

]
︸ ︷︷ ︸

minimized by q(θ) = δθ̂n (θ), θ̂n = MLE

+ KLD (q||π)︸ ︷︷ ︸
minimized by q = π

}
, (2)

Notation:

• P(Θ) = all probability distributions on Θ
• KLD = Kullback-Leibler divergence = Eq(θ) [log q(θ)− log π(θ)]

Inference interpretation = regularized loss-minimization:

• − log(p(xi |θ)) = loss of θ for xi

• Inference = regularizing MLE θ̂n with KLD(q||π)
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(2.2) Modularity and Interpretation

12 / 45 Optimization-centric Generalizations of Bayesian inference



(2.3) A natural generalization

q∗n (θ) = arg min
q∈Π

{
Eq(θ)

[ n∑
i=1
`(θ, xi )

]
︸ ︷︷ ︸

minimized by δθ̂n (θ)

+ D (q||π)︸ ︷︷ ︸
minimized by q = π

}
= P(`,D,Π)

An optimization-centric generalization of Bayesian inference:

(1) D (·||π) = any divergence regularizer penalizing deviations from π

(2) `(θ, x) = any loss assessing how well θ and x fit together
(3) Π ⊆ P(Θ) = some subset of all probability distributions on Θ

=⇒ Shorthand Notation: P(`, D, Π)
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(2.4) Special cases of note

q∗n (θ) = arg min
q∈Π

{
Eq(θ)

[ n∑
i=1
`(θ, xi )

]
︸ ︷︷ ︸

minimized by δθ̂n (θ)

+ D (q||π)︸ ︷︷ ︸
minimized by q = π

}
= P(`,D,Π)

(Some) special cases of interest:

14 / 45 Optimization-centric Generalizations of Bayesian inference



(2.5) Generalized Variational Inference

Terminology:

• Presented so far: a conceptual generalization of Bayesian inference
• Generalized Variational Inference (GVI) = computable inference

algorithms based on that generalization
• =⇒ means that Π = Q for some variational family Q.

Open questions:

• General properties of this generalisation?
• Applications/use cases?

=⇒ answered next
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(3) General features of the generalization

Answers to three questions:

(3.1) ’Is this even reasonable?’ (sanity checks)
(3.2) ’Okay, but under which conditions is it reasonable?’ (axiomatic

justification)
(3.3) ’Fine, but can it help me understand existing methods?’ (VI,

PAC-Bayes bounds, power posteriors, ...)
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(3.1) ’Sanity checks’: existence, uniqueness, consistency

q∗n (θ) = arg min
q∈Π

{
Eq(θ)

[ n∑
i=1
`(θ, xi )

]
+ D (q||π)

}
= P(`,D,Π)

Existence: If Π is convex and chosen so that q 7→ Eq(θ)
[∑n

i=1 `(θ, xi )
]

and q 7→ D (q||π) are continuous on Π, then the minimum exists
whenever q 7→ D (q||π) is convex.
=⇒ basic convex analysis on Banach spaces

Uniqueness: Guaranteed if q∗n exists and q 7→ D (q||π) is strictly convex
=⇒ basic convex analysis on Banach spaces
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(3.1) ’Sanity checks’: existence, uniqueness, consistency

q∗n (θ) = arg min
q∈Π

{
Eq(θ)

[ n∑
i=1
`(θ, xi )

]
+ D (q||π)

}
= P(`,D,Π)

Beyond continuity & convexity of q 7→ D (q||π)? You can still show
existence and uniqueness without convex regularizers [need that losses
are norm-coercive or Θ is compact; Arguments not that basic; see
Lemma 1 in Knoblauch (2019)]

Consistency: Guaranteed under relatively mild regularity conditions;
arguments are unfortunately quite complicated and rely on
Γ-convergence, see Knoblauch (2019).
=⇒ Idea of Γ-convergence ≈ ’if a sequence of objectives Γ-converge,
then their minimizers also converge (in a suitable sense, usually weakly)’
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(3.2) Axiomatic justification

Q: Does this generalisation result from ’reasonable’ axioms?

Axiom 1 (Variational representation)
The posterior q∗ ∈ P(Θ) solves an optimization problem over some
space Π ⊆ P(Θ). For any finite sample {xi}n

i=1, the optimization
problem seeks to jointly minimize two criteria:

(i) An in-sample loss
∑n

i=1 `(θ, xi ) to be expected under q∗(θ).
(ii) The deviation from the prior π(θ) as measured by some statistical

divergence D.

Theorem 1 (Form 1)
Under Axiom 1, posterior belief distributions can be written as

q∗(θ) = arg min
q∈Π

{
f
(
Eq(θ)

[ n∑
i=1

`(θ, xi )
]
,D(q||π)

)}
,

where f : R2 → R is some function that may depend on π,Π, `, {xi}n
i=1,
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(3.2) Axiomatic justification

Axiom 2 (Recovers Bayesian Posteriors)
Function f in Theorem 1 does not depend on π,Π, `, {xi}n

i=1, or D.
Further, q∗ is the Gibbs posterior if D = KLD, Π = P(Θ).

Theorem 2
Suppose the posterior belief q∗ ∈ P(Θ) satisfies Axioms 1 and 2. Then
the objective of Theorem 1 is uniquely identified as f (x , y) = x + y so
that

q∗(θ) = arg min
q∈Π

{
Eq(θ)

[ n∑
i=1
`(θ, xi )

]
+ D (q||π)

}
= P(`,D,Π)
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(3.3) Relation to VI / PAC-Bayes / power posteriors

(a) DVI ( = Discrepancy VI =
projection-centric) interpretation
of VI

(b) GVI (= optimization-centric)
Interpretation of VI
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(3.3) Relation to VI / PAC-Bayes / power posteriors

Proposition 1 (Optimality of standard VI)
Relative to the infinite-dimensional optimization problem over P(Θ)
characterizing the Gibbs posterior and a fixed variational family Π,
standard VI produces the optimal solution (i.e. posterior belief) in Π.

Proof.
VI posteriors are minima of the same objective as the full Bayesian
posterior—but constrained to some subset Π.

Proposition 2 (Suboptimality of alternative methods)
Relative to the infinite-dimensional problem over P(Θ) characterizing
Gibbs posteriors, and relative to a fixed finite-dimensional variational
family Π, non-standard VI methods produce sub-optimal solutions (i.e.,
posterior beliefs).
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(3.3) Relation to VI / PAC-Bayes / power posteriors
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Figure 2 – Top row: marginal posteriors for location parameters µ1, µ2 in 2D
Bayesian Gaussian Mixture Model. Bottom left: same marginal for µ1 as we
increase |µ1 − µ2|. Bottom right: posterior predictives.
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(3.3) Relation to VI / PAC-Bayes / power posteriors

E.g., McAllester’s (original) PAC-Bayes bound: if xi
iid∼ µ so that true

risk is R(θ) = Ex∼µ[`(θ, x)] and a ≤ ` ≤ b, then uniformly for all
q ∈ P(Θ) with probability at least 1− ε,

Eq(θ) [R(θ)] ≤ Eq(θ)

[
1
n

n∑
i=1

`(θ, xi )
]

+

√
KLD(q, π) + log 2

√
n
ε

2n .

I.e., we can minimize the righthand side over q ∈ P(Θ) to find that the
tightest generalisation bound has a solution of the form
P(`,DMcA,P(Θ)) with

DMcA(q‖π) =
√

n ·


√

KLD(q, π) + log 2
√

n
ε

2 −

√
log 2

√
n
ε

2

 .

=⇒ PAC-Bayes != a way to justify non-standard prior regularization, e.g.
Bégin et al. (2016) [Rényi’s α-divergence], Alquier & Guedj (2018),
Ohnishi & Honorio (2020) [f -divergences]
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(3.3) Relation to VI / PAC-Bayes / power posteriors

Power posteriors/’cold posteriors’: For some β > 0, given by

q∗(θ) ∝ π(θ)
n∏

i=1
p(xi |θ)β = P(− log p(·|θ) · β,KLD,P(Θ)) (3)

= P(− log p(·|θ),KLD · 1
β
,P(Θ))

Cold posteriors: β > 1, i.e. more weight on data rather than prior
=⇒ often used for NNs, where our priors are extremely poor.
Power posteriors: β < 1, i.e. more weight on prior rather than data
=⇒ often used when likelihoods are poorly misspecified and advertised as
’robust’ (... it’s always more robust as n→∞, but if n is small, your
robustness properties will depend a lot on the prior)

25 / 45 Optimization-centric Generalizations of Bayesian inference



(3.3) Relation to VI / PAC-Bayes / power posteriors /...

Method `(θ, xi ) D Π

Standard Bayes − log p(xi |θ) KLD P(Θ)

Power Likelihood Bayes − log p(xi |θ) 1
w KLD, w < 1 P(Θ)

Composite Likelihood Bayes −wi log p(xi |θ) KLD P(Θ)

Divergence-based Bayes divergence-based ` KLD P(Θ)

PAC/Gibbs Bayes any ` any D P(Θ)

VAE − log pζ (xi |θ) KLD Q

β-VAE − log pζ (xi |θ) β · KLD, β > 1 Q

Bernoulli-VAE continuous Bernoulli KLD Q

Standard VI − log p(xi |θ) KLD Q

Power VI − log p(xi |θ) 1
w KLD, w < 1 Q

Utility VI − log p(xi |θ) + log u(h, xi ) KLD Q

Regularized Bayes − log p(xi |θ) + φ(θ, xi ) KLD Q

Gibbs VI any ` KLD Q

Generalized VI any ` any D Q
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(3.4) Closed Forms

Well-known: Gibbs posteriors

P(`,KLD,P(Θ)) ∝ π(θ) · exp
{
−

n∑
i=1

`(θ, xi )
}

Unknown (until a few months ago): What if D 6= KLD?
=⇒ We now know the general form if D an φ-divergence
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(3.4) Closed Forms

Two examples:
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(4) Applications

Problems that can be tackled:

• Robustness to poor priors
• Robustness to poor likelihoods
• Simplified computation
• ...
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(4.1) Robustness to prior misspecification

q∗(θ) = arg min
q∈Π

{
Eq(θ)

[ n∑
i=1
`(θ, xi )

]
+ D (q||π)

}
= P(`,D,Π)

What we want: D that behaves like KLD if π is reasonable, but ignores
it if the data don’t fit the prior at all
First idea: down-weight D = KLD like in cold posteriors
=⇒ Problem: Now, not being certain of your prior amounts to being
more certain in your posterior....
Q: Is there an alternative?
=⇒ For reasons we don’t understand fully†, Rényi’s α-divergence seems
to do behave exactly as we want! (small loss of efficiency observed if
prior is well-specified)
†some limited theoretical results in Theorem 14 of Knoblauch et al.
(2019)
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(4.1) Robustness to prior misspecification
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Figure 3 – The prior for the coefficients is a Normal Inverse Gamma distribution
given by µ ∼ NI−1(µπ · 1d , vπ · Id , aπ, bπ) with vπ = 4 · Id , aπ = 3, bπ = 5 and
various values for µπ. For all posteriors, the loss ` is the correctly specified
negative log likelihood; all posteriors lie inside a mean field normal family Q.
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(4.1) Robustness to prior misspecification

Example: Bayesian Neural Networks
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Figure 4 – Top: Negative test log likelihoods. Bottom row: Test RMSE.
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(4.2) Robustness to likelihood misspecification

What it means: [Taking definition from Hooker & Vidyashankar]

Consider ε-contamination model of size ε ∈ (0, 1)

Pn,ε,y = (1− ε)Pn + εδy ; y ∈ X

and write `ε,n(θ) = Ex∼Pn,ε,y [`(θ, x)]. Define the posterior influence
function as

PIF(y , θ,Pn) := d
dεP(`ε,n(θ),D,Π)|ε=0.

The posterior P(`ε,n(θ),D,Π) is called globally bias-robust if
supθ∈Θ supy∈X |PIF(y , θ,Pn)| <∞, meaning that the sensitivity of the
generalised posterior to the contaminant y is limited.
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(4.2) Robustness to likelihood misspecification

What it means:
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(4.2) Motivation for Discrepancy-based losses

General Observation: log likelihoods ≈ minimize the KLD

q∗n (θ) = arg min
q∈Π

{
Eq(θ)

[ n∑
i=1
− log p(xi |θ)

]
+ KLD (q||π)

}

= arg min
q∈Π

{
Eq(θ)

[
1
n

n∑
i=1
− log p(xi |θ)

p0(xi )

]
− 1

n

n∑
i=1

log p0(xi ) + 1
n KLD (q||π)

}
= arg min

q∈Π

{
Eq(θ)

[
1
n

n∑
i=1
− log p(xi |θ)

p0(xi )︸ ︷︷ ︸
≈KLD(p0‖p(·|θ))

]
+ 1

n KLD (q||π)
}

Obvious question: What are the (dis)advantages of minimizing other
discrepancies between p0 and p(·|θ) instead?

General Answer: Decreases statistical efficiency, increases robustness
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(4.2) Robustness to likelihood misspecification

Some applications of robust divergences as losses:

• Reducing false detection of changepoints
• Improving performance of deep Gaussian Processes
• Graphical models
• ...

Many, many more... — worth considering every time your likelihood is at
best a reasonable guess.
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(4.2) Outlier-Robust Changepoint Detection

Using standard Bayesian On-line Changepoint Detection
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(4.2) Outlier-Robust Changepoint Detection

Using the β-divergence for Robust Changepoint Detection
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(4.2) Likelihoods with Deep Gaussian Processes

γ-divergences for DGP regression3
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Figure 5 – Top row: Negative test log likelihoods. Bottom row: Test RMSE.
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(4.3) Improving Bayesian computation

Idea: Find losses ˜̀ 6= ` s.t.
CompTime

[
P(˜̀,D,Π)

]
<< CompTime [P(`,D,Π)]

Example 1: Approximate Bayesian Computation (ABC).
Step 1: θ ∼ π(θ)
Step 2: sample xfake ∼ p(xfake|θ)
Step 3: keep θ if D(xfake, xobserved) < ε; discard otherwise.
=⇒
q(θ|xobserved) ≈ qabc(θ|xobserved) ∝

∫
1[D(xfake,xobserved)<ε]p(xfake|θ)π(θ)dxfake.

Usually: qabc(θ|xobserved) interpreted as approximation to q(θ|xobserved).

Alternative: qabc(θ|xobserved) ∝ π(θ) exp{− Ln(θ, xobserved)︸ ︷︷ ︸
=
∫

1[D(xfake,xobserved)<ε]p(xfake|θ)

}

=⇒ simulator error model err(xfake, xobserved) =
∫

1[D(xfake,xobserved)<ε]
=⇒ ’smoother’ error models more sample-efficient (e.g., err =normal)
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(4.3) Improving Bayesian computation
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(4.3) Improving Bayesian computation

Idea: Find losses ˜̀ 6= ` s.t.
CompTime

[
P(˜̀,D,Π)

]
<< CompTime [P(`,D,Π)]

Example 2: Intractable Likelihoods/Energy-based models
Challenge: Likelihoods with unknown normalisers, i.e.

p(x |θ) = p̂(x |θ)︸ ︷︷ ︸
known

· Z (θ)︸ ︷︷ ︸
unknown

=⇒ standard Bayesian posterior ’doubly intractable’

Solution: loss depending on p(x |θ) only via ∇x p(x |θ) != ∇x p̂(x |θ)
=⇒ Stein’s method! Operationalisable via Kernel Stein Discerpancies
=⇒ Makes posteriors ’singly intractable’

. . . Question: but can we do even better?!
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(4.3) Improving Bayesian computation

Answer: Yes, whenever p(x |θ) is part of the exponential family!
=⇒ Then, we get closed forms if π is normal!
=⇒ Closed forms instead of ’doubly intractable’ posteriors
=⇒ Added bonus: robustness to model misspecification!

p(x |θ) ∝ exp
(
−
∑

i θi exp(xi )−
∑

i<j θi,j exp(xi ) exp(xj)
)
× exp (

∑
i xi )
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Summary

(1) Bayesian inference = a single optimization problem P ∈ P
(2) Optimization problem P ∈ P needs strict assumptions
(3) These assumptions are often violated in Machine Learning (ML)
(4) Many other optimization problems P ′ ∈ P you could solve instead

(Even though we still know relatively little about them!)
(5) In ML, we would often do better to solve P ′ ∈ P rather than P

Also—And perhaps even more importantly:

• The study of P ′ ∈ P has just begun! Get involved! :)
• If I managed to inspire you to work on these problems, get in touch!

I love to collaborate, and there are enough open problems for a
lifetime! :)
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Contact me/follow my research at

E-mail address: j.knoblauch@warwick.ac.uk
Personal Website: https://jeremiasknoblauch.github.io/

Twitter Handle: @LauchLab
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