A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods

Abstract

We establish the first mathematically rigorous link between Bayesian, variational Bayesian, and ensemble methods. A key step towards this is to reformulate the non-convex optimisation problem typically encountered in deep learning as a convex optimisation in the space of probability measures. On a technical level, our contribution amounts to studying generalised variational inference through the lense of Wasserstein gradient flows. The result is a unified theory of various seemingly disconnected approaches that are commonly used for uncertainty quantification in deep learning—including deep ensembles and (variational) Bayesian methods. This offers a fresh perspective on the reasons behind the success of deep ensembles over procedures based on parameterised variational inference, and allows the derivation of new ensembling schemes with convergence guarantees. We showcase this by proposing a family of interacting deep ensembles with direct parallels to the interactions of particle systems in thermodynamics, and use our theory to prove the convergence of these algorithms to a well-defined global minimiser on the space of probability measures.

Date
Jun 10, 2023 2:00 PM
Event
Research talks at various research organisations, including at the ELLIS theory workshop in Tuebingen, Imperial College, UCL, …
Jeremias Knoblauch
Jeremias Knoblauch
Associate Professor and EPSRC Fellow in Machine Learning & Statistics

My research interests include robust Bayesian methods, generalised and post-Bayesian methodology, variational methods, and simulators.